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When we define a static semantics for a language, we wish that static semantics to imply some
properties about the dynamic semantics. In this note, we will discuss what properties are, how
we can classify them, and the kinds of properties we can ensure from static semantics like type
systems. Lastly, we will extend MinHS with exceptions, an error-handling mechanism, which
allows us to ensure the property of type safety in the presence of partial functions.

1 Properties

A trace or execution of a program is a (possibly infinite) sequence of states σ1 7→ σ2 7→ · · · 7→ σn
that follows the execution of a program in small step semantics.

A behaviour is like a trace, however, we change the notion slightly so as to only have to deal
with infinite sequences of states. A finite sequence of states can be made into a behaviour simply
by repeating the final state forever when the program terminates.

With the definition of behaviours, we can define a property formally as a set of behaviours. A
very simple property would be termination, expressed formally as {b | ∃i. bi ∈ F}, where bi refers
to the ith state in the behaviour b, and F refers to the set of final states.

1.1 Safety and Liveness

There are generally two ways to classify properties:

1. A safety property states that something bad will never happen. For example:

I will never run out of money.

Formally, these are those properties that may be violated by a finite prefix of a behaviour.
For example, if I spend all my money at the pub and run out of money, then I have taken
a finite sequence of steps that violates the property. Examples of safety properties we’ve
seen before include hoare triples {φ}s{ψ}, and many of the static semantics properties we’ve
checked (e.g. that variables are initialised before they’re used, and that all variables used
are in scope).

2. A liveness property states that something good will happen. For example:

If I start drinking now, eventually I will be smashed.

These are properties that cannot be violated by a finite prefix of a behaviour — there is
always some way to satisfy the property after any finite number of steps. For example, even
if I drink 100 beers and am still not intoxicated, I could always get drunk on the 101st beer.
So there is no telling that the property has been violated no matter how many steps I’ve
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already taken, as I could always satisfy the property later. Examples of liveness properties
we’ve seen before include termination. 1

A very powerful result from Alpern and Schneider2 is that all properties are the intersection of
a safety property and a liveness property. For example, the property that “the program returns
the number three” is the intersection of the liveness property that the program returns a value
(as opposed to looping forever), and the safety property that says that any returned value of the
program should be three.

Finally, note that the words “good” and “bad” are just used for building intuition—they should
not be thought of as part of the definition. Safety and liveness are not moral judgements. For
example, this property states that something good will never happen, but is also a safety property:

I will never win a million dollars.

1.2 Type Safety

A type system is a type of static semantics used for verifying programs and improving the reliability
of software. It is, essentially, a means of annotating expressions and values in a program with a
tag, called a type, which tells us something about the set of runtime data the expression can
represent.

(x : τ) ∈ Γ

Γ ⊢ x : τ

x : τ1,Γ ⊢ e : τ2
λx. e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

Adding types to λ-calculus, as shown above, ensures two major properties. Firstly, and most
significantly, all terms will reduce to a normal form. Terms such as (λx. x x) (λx. x x), which
has no normal form, cannot be assigned a type under these rules (try it and see for yourself ,).
Furthermore, we also know that the normal form of each term will have the same type as the
original term.

If we look at a language like MinHS, however, we have built-in recursion in the form of the
recfun construct. A term like

(recfun f :: (Int → Int) x = f x) 3

will clearly loop forever. So, we don’t get the guarantees from MinHS’s type system that we get
from adding types to λ-calculus, as the above term has a type, but no normal form.

It turns out that while we can’t guarantee the liveness part of the typing properties, we can
guarantee the safety part. This is a property called type safety.

Succinctly, it can be stated as:

Well-typed programs do not go wrong.

By “go wrong”, we mean reaching a stuck state — that is, a non-final state with no outgoing
transitions.

Proving type safety We can decompose type safety into two sub-lemmas. A language with
small-step states Σ, final states F ⊆ Σ, state transition relation 7→, and typing rules is type safe
if it has two properties:

• Progress - If a program can be typed, it is either a final state or can progress to another
state. That is, if ⊢ e : τ then e ∈ F or ∃e′. e 7→ e′.

• Preservation - If a program has a type, evaluation will not change that type. That is, if
⊢ e : τ and e 7→ e′ then ⊢ e′ : τ .

1The related notion of confluence does not qualify as a property in our terminology: to define it, it is not enough
to consider a single behaviour only.

2It’s a readable paper: https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

2



It can be seen from the above definition that well typed programs will not reach a stuck state. If
the program is in a final state, then it is by definition not stuck. If not, we know from the progress
property that the program must move to a new state. We know from preservation that this new
state is also typed, which means (from progress) that it must either be a final state or progress to
a new state. Similar reasoning applies until the program terminates (or loops).

e1 : τ

progress

7→ e2 : τ

preservation

progress

7→ e3 : τ

preservation

progress

7→ · · ·

It therefore follows that languages such as C, which are unsafe, could reach a stuck state. In such
a situation, the program doesn’t simply halt (or at least, it’s not obliged to). What happens is
left undefined. For example, there is no telling what this C program will do without referring to
platform or compiler documentation:

int main() {
return *((int*)(0x0));

}

Clearly, speaking of type safety is only applicable in the context of formal treatment of program-
ming languages. Determining exactly what guarantees a type system gives you requires these
techniques.

In general, the more expressive the type system is, the more information can be inferred by
the compiler. Therefore, for practical reasons we typically want type checking to be decidable.
If it is not, our compiler may not terminate. There are languages such as C++, however, where
type checking may not terminate.

2 Dealing with Partiality

Suppose we have a partial operation, such as division, typed as follows:

Γ ⊢ t1 : Int Γ ⊢ t2 : Int

Γ ⊢ Div t1 t2 : Int

We’ve assigned it a type, but it does not necessarily guarantee progress. The expression Div x 0
for any x will not return a value. There are two solutions:

• Change the static semantics - That is, disallow division by zero statically. There are tech-
niques to approximate this for Turing-complete languages, however in general this is unde-
cidable. For those that are interested, the proof is a corollary of Rice’s theorem.

• Change the dynamic semantics - This approach is used by most languages.

Seeing as MinHS is Turing complete, we are unable to statically analyse if the program divides
by zero. Hence, we shall extend the dynamic semantics of the language to handle the situation at
runtime.

The simplest fix is to make partial functions yield some new state error ∈ F for undefined
cases:

Div v (Num 0) 7→ error

Furthermore, we would define error to interrupt any nested computation and produce error.

Plus error e 7→ error

Plus e error 7→ error
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If error e1 e2 7→ error

There are, of course, a very large number of additional error propagation rules. Here, our abstract
machines actually buy us some brevity. We simply state that partial functions result in error,
and completely annihilate the stack (e.g in the C Machine):

Div v � ▷ s ≺ 0 7→ error

This guarantees progress - partial functions will evaluate to error where they are not defined,
meaning that the evaluation will not hit a stuck state.

We have yet to ensure preservation, however. Preservation says that type is preserved across
evaluation. Seeing as any partial function application (of any type) could evaluate to error, the
only way to make error respect preservation is to make it a member of every type:

Γ ⊢ error : τ

2.1 Exceptions

Adding an error state seems well and good for ensuring type safety, but many real-world languages
have more robust, fine-grained error handling techniques, namely exceptions.

Exceptions are a means for a function to exit without returning. Instead, the function may
raise an exception, which is caught by an exception handler somewhere further up the runtime
stack. Most of you would have seen exceptions from languages such as Java, Python, or C++.

We will extend MinHS to include exceptions by adding two pieces of abstract syntax: Try e1 x.e2
will evaluate e1, and if Raise τ v is ever encountered while evaluating e1, it will stop evaluating
e1, and start evaluating e2 where x is bound to the value of v.

These Try expressions can of course be nested, and exceptions can be re-Raised within an
exception handler.

Exception values (Such as v in the above example), are made to be of a fixed type, τexc. It
is not relevant what type this is, it could be a special Exception type, it could be an Int error
code, or just a String message.

We type these new expressions as follows. Try expressions take the type of their subexpressions,
and raise expressions are of any type specified in the expression (for a similar reason to the typing
of error):

Γ ⊢ e : τexc
Γ ⊢ Raise τ e : τ

Γ ⊢ e1 : τ x : τexc,Γ ⊢ e2 : τ

Γ ⊢ Try e1 x.e2 : τ

2.1.1 Dynamic Semantics for the C Machine

We introduce a new execution mode (in addition to ≺ and ≻), used to signify that an exception
is being raised, written ≼.

So, when we evaluate a try expression, we simply evaluate the first subexpression, and push
the handler onto the stack:

s ≻ Try e1 x.e2 7→c Try � x.e2 ▷ s ≻ e1

Then, if the evaluation returns, we simply discard the try stack frame:

Try � x.e2 ▷ s ≺ v 7→c s ≺ v

If we encounter a raise expression, we first evaluate the exception value being raised:

s ≻ Raise τ e 7→c Raise τ � ▷ s ≻ e
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And, once it returns, we enter the new exception handling mode, ≼:

Raise τ � ▷ s ≺ v 7→c s ≼ v

This mode continuously pops frames off the stack:

f ▷ s ≼ v 7→c s ≼ v

Until at last we encounter a Try expression, where the handler is evaluated.

Try � x.e2 ▷ s ≼ v 7→c s ≻ e2[x := v]

2.1.2 Optimising Exceptions

The problem with this approach is one of performance. Raising an exception is O(n) in the size
of the stack, which could be a serious performance hit if the stack is very large (for example, in a
big recursive function).

Seeing as in our abstract machines we are concerned about performance, we will refine our
machine definition to make exception handling fast.

We will define a new type of stack, a Handler stack. The empty handler stack is denoted by
⋆, and each handler frame consists of a runtime stack, and the handler expression:

⋆ HStack

s HStack e Expr r Stack

⟨r, x.e⟩ ▷ s HStack
Our states will now resemble h, r ≻ e, where h is the handler stack, r is the runtime stack. The
“exception handling” mode ≼ is not needed and therefore is removed.

When we enter a Try block, we add a handler to the handler stack, and a placeholder to the
runtime stack. The handler includes the current runtime stack and the handler expression:

h, r ≻ Try e1 x.e2 7→c ⟨r, x.e2⟩ ▷ h, Try ▷ r ≻ e1

We include the placeholder so that if we return from a Try block, we can remove the handler from
the handler stack as it was not used:

⟨r′, x.e2⟩ ▷ h, Try ▷ r ≺ v 7→c h, r ≺ v

When we encounter a Raise expression, we first evaluate the exception value as normal, and then
we immediately switch to the runtime stack in the top handler frame of the exception stack, saving
us the trouble of manually going through the runtime stack frame by frame:

⟨r′, x.e2⟩ ▷ h, Raise τ � ▷ r ≺ v 7→c h, r′ ≻ e2[x := v]

Note: It may seem inefficient to copy the runtime stack to the handler stack each time a Try block
is reached. Note however that, in the course of evaluating the try block, the machine will never
pop off the Try placeholder. Therefore a pointer to the current runtime stack could be kept in
the handler stack rather than a copy. Everything above that pointer is freed when an exception
is raised.
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